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Abstract

We present an analytical approach for studying the coupled development of ocular dominance

(OD) and orientation preference (OP) columns. Using this approach we demonstrate that OD

segregation can induce the stabilization and even the production of pinwheels by their crystalliza-

tion in two types of periodic lattices. Pinwheel crystallization depends on the overall dominance

of one eye over the other, a condition that is fulfilled during early cortical development. Increas-

ing the strength of inter-map coupling induces a transition from pinwheel-free stripe solutions to

intermediate and high pinwheel density states.
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In the primary visual cortex information is processed in a two dimensional array of mod-

ules called orientation preference (OP) columns [1]. In many species columnar patterns con-

tain pinwheel centers, singular points around which columns activated by different stimulus

orientations are radially arranged like the spokes of a wheel [2]. Recent research applying

in vivo 2-photon imaging to pinwheel centers revealed that their radial organization is laid

down with single cell precision [3]. How pinwheels are formed during visual development

remains unresolved. In theoretical models pinwheels are generated by spontaneous symme-

try breaking but are often dynamically unstable [4]. Recent theoretical studies, treating

the system of orientation columns essentially as an isolated system, have examined if pin-

wheels may be stabilized by long-range intracortical interactions [5], by a coupling to the

large scale map of visual space [6], or by wiring length constraints [7]. In the visual cortex,

however, orientation columns are presumably interacting with e.g. ocular dominance (OD)

domains, spatial frequency, and direction preference columns, see however [8]. For instance

OD borders intersect many of these preferentially at right angles [9]. It may thus be inad-

equate to theoretically study the layout of orientation columns neglecting their relation to

other columnar systems. Recently this perspective has received experimental support by a

study reporting that orientation columns are organized more smoothly when the system of

OD columns is removed [10]. Indeed simulations suggest that OD segregation impedes the

process of pinwheel annihilation [4, 11]. So far, however, there has been no analytic demon-

stration that an intrinsically unstable system of orientation pinwheels can be stabilized by

interactions with other maps.

Here we present a dynamical systems approach for analyzing the interactions of OP and OD

maps. We design a dynamical model for the coordinated development of OP and OD maps

in which pinwheels become unstable in the weak coupling limit. The inter-map coupling is

specified according to experimentally observed geometric relationships between OD and OP

maps. Because the contralateral eye dominates during the initial formation of OD columns

[12], we systematically study the impact of overall dominance by one eye on the dynamics

of pinwheels. Using weakly nonlinear analysis we derive amplitude equations describing the

existence and stability of pinwheel free and pinwheel rich OP maps in the coupled system.

We identify two types of pinwheel rich solutions differing in their pinwheel density and cal-

culate the stability and phase diagram of these solutions as a function of inter-map coupling

and contralateral eye dominance. We find that pinwheel crystals are stable above a critical
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degree of contralateral eye dominance that induces a patchy pattern of OD domains. In-

creasing the strength of inter-map coupling induces a transition from pinwheel free solutions

to low and high pinwheel density patterns. In the latter regime OD segregation even induces

the formation of additional pinwheels.

The spatial structure of an OP map is conveniently represented by a complex field z(x)

where x denotes the 2D position of neurons in the visual cortex, the modulus |z(x)| is a

measure of their selectivity and θ(x) = 1
2
arg z is their preferred orientation [4]. In this rep-

resentation pinwheel centers are the zeros of the field z(x). Ocular dominance is described

by a real field o(x) where negative and positive values indicate ipsi- and contralateral eye

dominance, respectively. Because OD and OP maps are not independent of each other we

consider models containing coupling terms between both fields

∂t z(x, t) = F [z(x, t), o(x, t)]

∂t o(x, t) = G[z(x, t), o(x, t)], (1)

where F [z, o] and G[z, o] are nonlinear operators. Various biologically detailed models have

been cast in this form [4, 13]. Because cortical maps arise from a cellular instability with a

typical wavelength Λ, the mathematically simplest models for the spontaneous generation

of these patterns are of Swift-Hohenberg type [14]. We therefore choose F and G to be of

this type and couple the fields through an energy density T

∂t z(x, t) = Lz z(x, t) − |z|2z − ǫ
δT

δz

∂t o(x, t) = Lo o(x, t) − o(x, t)3 + γ − ǫ
δT

δo
. (2)

Here L{o,z} = r{o,z} − (k2
c + ∆)

2
, γ is an OD bias leading to an overrepresentation of the

contralateral eye for γ > 0, and ǫ is the coupling strength. In this model pinwheels are

unstable in the weak coupling limit leading to systems of stripes for ǫ = 0, mimicking the

behavior of competitive Hebbian models for OD or OP maps in this situation [4]. The form

of T is found from the experimental observation that iso-orientation lines tend to intersect

the OD borders perpendicularly [9]. T can thus be expected to contain terms of the form

|∇o∇θ|2m. Decomposing the complex field z(x) into the selectivity |z| and the preferred

orientation θ finds

T = |∇z∇o|2m = |z|2m
(

|∇o∇ ln |z||2 + 4|∇o∇θ|2
)m

=
(

|∇o∇Rez|2 + |∇o∇Imz|2
)m

. (3)
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FIG. 1: Pinwheel annihilation and preservation in simulations of Eqn. (2) for different

strengths of inter-map coupling and OD bias, ro = 0.2, rz = 0.02. Color coded OP map, zero

contours of OD map superimposed. (a, b) γ = 0,ǫ = 0, 2000 (c, d) γ = 0.15,ǫ = 2000. Upper

(lower) row: t = 0 (104/rz). Initial conditions identical in (a)-(c).

Where orientation selectivity is locally homogeneous, i.e. ∇ ln |z| ≈ 0, T is minimized if the

direction of the iso-orientation lines (∇θ) is perpendicular to the OD borders. At pinwheel

centers the zero contours of Re z and Im z cross and ∇Re z and ∇Im z are not parallel, T can

be minimized only if |∇o| is small at the pinwheel centers, i.e. near extrema or saddle-points

of o(x). In the following we analyze the case m = 2. As we will see below, this choice allows

for a limit in which map interactions become unidirectional.

We observe that for substantial contralateral bias and above a critical coupling ǫ pinwheels

are preserved or are even generated after symmetry breaking. Numerical simulations of the

dynamics Eqn. (2) are shown in Fig. 1. Without a contralateral bias the attractors are

pinwheel-free stripe solutions irrespective of the strength of the inter-map coupling.

To reveal the exact conditions for the preservation of pinwheels by inter-map coupling

we used weakly nonlinear analysis to study the nature and stability of different types

of solutions. To this end we first studied how the emerging OD map depended on the

overall eye dominance. Shifting the OD field by a constant o(x, t) = õ(x, t) + δ, the

dynamics Eqn. (2) is mapped to ∂t õ(x, t) = L̃ õ + γ̃õ2 − õ3 with L̃ = r̃o − (k2
c + ∆)

2
,

r̃o = ro − 3δ2, and γ̃ = −3δ where δ is the real solution of −δ3 + (ro − kc) δ + γ = 0;
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FIG. 2: (a) Phase diagram of the OD model Eqn. (2). Dashed lines: stability border of

hexagon solutions, solid line: stability border of stripe solution, gray regions: stability region

of homogeneous solution (b) Contralateral eye dominated neurons for the three stationary

solutions. Circles: numerically obtained values, solid lines: Cst and Chex.

an equation that has been extensively studied in pattern formation literature [15]. It has

three types of stationary solutions: (1) A homogeneous solution with spatially constant

eye dominance oc(x) = δ, (2) OD stripes ost(x) = 2Bst cos (x+ ψ) + δ, with Bst =
√

r̃/3,

and (3) hexagonal arrays of ipsilateral eye dominance blobs in a sea of contralateral eye

dominance ohex(x) = Bhex
∑3

j=1 e
ıψjeı

~kj~x + c.c. + δ, with
∑3

j
~kj = 0,

∑3

j ψj = π, and

Bhex = −γ̃/15 +
√

(γ̃/15)2 + r̃/15. The fractions of contralateral eye dominated terri-

tory Cst and Chex increase with γ as cos (Cstπ) = −δ/ (2Bst) and (1 − Chex)
√

3 2π ≈
3 arccos

(

1
2

(

−1 +
√

3 + δ
Bhex

))2

for (2) or (3), (Fig. 2b). The phase diagram of this model

is depicted in Fig. 2(a). It shows the stability borders for the three solutions. Without a

bias term the OD map is either constant, for ro < 0, or has a stripe layout, for ro > 0.

For positive ro and increasing bias term there are two transition regions. First a transition

region from stripes to hexagons (between γ∗ and γ∗2) and second a transition region from

hexagons to the homogeneous solution (between γ∗3 and γ∗4).

Close to instability, stationary solutions to the full dynamics Eqn. (2) can be calculated

analytically by weakly nonlinear analysis [16]. The Fourier components of the emerging
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pattern are located on the critical circle ~kj = (cos jπ/3, sin jπ/3) kc so that

z(x, t) =

3
∑

j

(

Aj(t)e
ı~kj~x + Aj−(t)e−ı

~kj~x
)

o(x, t) =

3
∑

j

(

Bj(t)e
ı~kj~x +Bj(t)e

−ı~kj~x
)

, (4)

with the complex amplitudes Aj = Aje
ıφj , Bj = Bjeıψj . Although the coupling terms

enter at seventh order in the amplitude expansion they can be written as an effective cubic

interaction term. Because Ai ∝
√
rz and Bi ∝

√
ro, the coupling onto the OD dynamics

becomes small for rz ≪ ro, since terms like ǫ|A|4|B|2B ∝ r2
zr

3/2
o are negligible compared to

terms like |B|2B ∝ r
3/2
o . In this limit, the backreaction of the OP map onto the OD map is

thus negligible. Using uniform modes Bi = B, the amplitude equations for the OP map are

given by

∂tAi = rz Ai −
6

∑

j

gij|Aj |2Ai − 2
3

∑

j 6=i

AjAj−Ai−

−ǫB4

6
∑

j,l,k

hijlkAjAlAk , (5)

with Aj− = Aj+3, gii = 1, gij = 2 and hijlk an effective self-interaction tensor. The dynamics

of the modes Ai− is given by interchanging Ai and Ai− . A solution of hexagonal symme-

try (symmetric under rotation by 120 degree) to Eqn. (5) is given by the uniform solution

Aj = Aj− = A, φj = ψj +(j− 1)2π/3+ d δj,2, and φj− = −ψj +(j− 1)2π/3+ d (δj,1 + δj,3),

where we choose ψ1 = ψ3 = 0, ψ2 = π and the constant d ≈ 1.176 is the solution of a tran-

scendental equation. For negligible backreaction B = Bhex and A2 ≈ rz/ (9 + 55.6ǫB4
hex).

The uniform solution is determined up to a free phase ϕ which results from the orientation

shift symmetry z → z eıϕ of Eqn. (2). The positions of the pinwheels are fixed by the OD map

and there are no translational degrees of freedom. In addition to these hexagonal pinwheel

crystals (hPWCs) there exist also non-uniform solutions. Besides stripe-like solutions of z(x)

with one dominant mode we find rhombic pinwheel crystals (rPWCs) Aj = Aj− = (A, a,A)

with a ≪ A and distorted rhombic crystals Aj = (A1,A2,A3) , Aj− = (A3,A2,A1), both

symmetric under rotation by 180 degree. We analytically calculated the stability properties

of the uniform solution by linear stability analysis. The phase diagram for rz ≪ ro, cf.

Fig. 3(a) reveals a transition from rPWCs to hPWCs with increasing coupling strength ǫ for
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FIG. 3: (a) Phase diagram of the model Eqn. (5) for rz ≪ ro. Vertical lines: stability range

of OD hexagons, red solid line: stability border of hPWC, blue solid line: stability border of

rPWC, blue dashed line: transition from rhombic to distorted rPWC. hPWC is ground state

above the dashed red line. (b) hPWC (c) rPWC. OD contour lines: 10%, 50%, 90%

contralateral eye dominance (black, gray, white), dashed line: unit cell.

intermediate degrees of OD bias. For γ < γ∗ or for γ > γ∗4 pinwheel-free orientation stripes

are dynamically selected. For γ∗ < γ < γ∗4 and above a critical effective coupling strength

ǫB4 ≈ 0.042, hPWCs are stable and become the energetic ground state above ǫB4 ≈ 0.12.

Below ǫB4 ≈ 0.065, rPWCs are stable leading to a bistability region between rPWCs and

hPWCs. We find in this region that rPWCs transform into distorted rPWCs above an ef-

fective coupling strength of ǫB4 ≈ 0.033. Although rPWC are stable even in the uncoupled

case they never become the energetic ground state. Thus for substantial bias towards one

eye pinwheels are in fact stabilized and pinwheel rich solutions become ground states by

inter-map coupling.

The layouts of the main pinwheel rich solutions are shown in Fig. 3b,c. The hPWC contains

6 pinwheels per unit cell and the pinwheel density i.e. the number of pinwheels per Λ2 [4]

is given by ρ = 6 cos(π/6) ≈ 5.2. The rPWC has 4 pinwheels per unit cell and its pinwheel

density is ρ = 4 cos(π/6) ≈ 3.5. One may expect that the energy term Eqn. (3) favors

7



pinwheels to colocalize with OD extrema. For hPWCs three pinwheels of the same topolog-

ical charge are in fact located at the extrema of the OD map. The other three however are

located near OD borders. In case of the rhombic layout there is only one pinwheel at an OD

extremum while the other three pinwheels are located at OD saddle-points which are also

energetically favorable positions with respect to T .

We tested whether these solutions and their stability ranges revealed for rz ≪ ro persist

when the backreaction on the OD map is taken into account. To this end we solved the

full field dynamics Eqn. (2) numerically using a fully implicit Krylov subspace algorithm

with periodic boundary conditions on a 128x128 mesh with an aspect ratio of Γ = 22. In

simulations we tracked the pinwheel density from t = 0 to t = 104 r−1
z , cf. Fig. 4. In

the uncoupled case (ǫ = 0), most of the patterns decay into a stripe solution and their

pinwheel density drops towards zero. At small coupling strengths (ǫ = 200) the pinwheel

density converges either to zero (stripes), to values near 3.5 for the rPWC, or to approx-

imate 5.2 for the hPWC. At high map coupling (ǫ = 2000), pinwheel-free stripe patterns

form neither from pinwheel rich nor from pinwheel free initial conditions. In this regime

the dominant layout is the hPWC. However regions of hPWC layout can be inter-digitated

with long lived rPWCs and stripe domains. Figure 4(d) shows the time course of the power

P (t) = 〈|z(x, t)dyn|2〉x/〈|z(x, t)th|2〉x. The field zth is obtained from solution of the ampli-

tude equations Eqn. (4) while zdyn is the field obtained from the simulation. The amplitudes

grow and saturate after t ≈ r−1
z . When the amplitudes are saturated pattern selection

starts. Quantitatively, we find that with backreaction the critical coupling strengths are

slightly increased compared to their values in the limit rz ≪ ro.

Our analysis for the first time conclusively demonstrates that OD segregation can stabilize

pinwheels, even if they are intrinsically unstable in the uncoupled dynamics of the OP map,

raising the possibility that inter-map coupling is the mechanism of pinwheel stabilization in

the visual cortex. Our results indicate that the overall dominance of one eye is important

for the effectiveness of this mechanism. In this case, OD domains form a system of patches

rather than stripes enabling the capture and stabilization of pinwheels by inter-map cou-

pling. Studying a wide range of phenomenologically conceivable interaction energies we find

that systems of OD stripes are in general not expected to stabilize pinwheel patterns. Inter-

estingly, visual cortex around the time of early OP development is indeed dominated by one

eye and has a pronounced patchy layout of OD domains supporting this notion [12]. Further
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FIG. 4: Time evolution of the pinwheel density for rz = 0.05, ro = 0.25, γ = 0.15. (a)-(c)

Simulations in blue started from an identical set of 20 initial conditions. Red dashed lines:

ρ = 4cos(π/6) and ρ = 6cos(π/6). (a)-(c) ǫ = 0, 200, 2000. (c) OD and OP stripes as initial

conditions (green). (d) Power of OP map, ǫ = 0, 200, 2000 (red, blue, green).

support comes from experiments in which the OD map was removed artificially, resulting in

a significantly smoother OP map [10]. Removal of the OD map, however, does apparently

not completely destabilize pinwheels. This might reflect the influence of additional columnar

systems of patchy layout like spatial frequency or direction columns that are expected to

interact with the OP map in a similar fashion as OD columns. Interactions among multiple

coupled maps may potentially also explain the non-crystalline spatial organization of OP

maps in the visual cortex. The approach introduced here will be useful for further rigorous

analyses of the interaction among multiple maps in cortical development.
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